User Guide

Quick Start

Install the package with:

$ pip install scidb-py

Connect to SciDB and run a query:

>>> import os
>>> url = os.environ.get("SCIDB_URL", "https://localhost:8239")
>>> from scidbpy import connect
>>> db = connect(url)
>>> db.iquery('store(build(<x:int64>[i=0:2], i), foo)')

Download data from SciDB:

>>> db.arrays.foo[:]
   i    x
0  0  0.0
1  1  1.0
2  2  2.0

Upload data to SciDB and create an array:

>>> import numpy
>>> ar = db.input(upload_data=numpy.arange(3)).store()
>>> print(ar)
... 
py_..._1

Run a query with chained operators and download the resulting array:

>>> db.join(ar, 'foo').apply('j', ar.i + 1)[:]
   i  x  x_1  j
0  0  0  0.0  1
1  1  1  1.0  2
2  2  2  2.0  3

Operators can also be composed:

>>> db.apply(db.join(ar, 'foo'), 'j', ar.i + 1)[:]
   i  x  x_1  j
0  0  0  0.0  1
1  1  1  1.0  2
2  2  2  2.0  3

Cleanup:

>>> db.remove(db.arrays.foo)
>>> del ar

Requirements

SciDB 19.11 or newer with Shim.

SciDB 23.10 or newer without Shim.

Python 3.6.x or newer.

Required Python packages:

backports.weakref
numpy
pandas
requests
requests-toolbelt
six

Installation

Install latest release:

$ pip install scidb-py

Install development version from GitHub:

$ pip install git+http://github.com/paradigm4/scidb-py.git

Connect to SciDB

Connect to SciDB using connect():

>>> from scidbpy import connect
>>> db = connect()  # Connect to default host and port
>>> db = connect(url)  # Connect to SciDB at a given URL

connect() is aliased to the constructor of the DB class. See DB() for the complete set of arguments that can be provided to connect. http://localhost:8080 is the default connection URL is none is provided.

If the connection requires authentication, the username and password can be passed in via the scidb_auth argument (see below); if not provided, the default username and password are read from a file in the first of these locations that exists:

  • $SCIDB_AUTH_FILE

  • $XDG_CONFIG_DIR/scidb/iquery.auth

  • ~/.config/scidb/iquery.auth

See DB() for details about the auth file format and special requirements for its file permissions.

Display information about the db object:

>>> db
DB('https://...', ..., None, ..., False, None, False, 256, False)
>>> print(db)
scidb_url         = https://...
scidb_auth        = ...
http_auth         = None
verify            = ...
admin             = False
namespace         = None
use_arrow         = False
result_size_limit = 256
no_ops            = False

Advanced Connection

Provide Shim credentials (which are distinct from scidb credentials - they are only used for Shim, not the SciDB client API).

>>> db = connect(http_auth=('foo', 'bar'))
... 
>>> db
... 
DB('https://...',
   None,
   ('foo', PASSWORD_PROVIDED),
   None,
   False,
   None,
   False,
   256,
   False)
>>> print(db)
... 
scidb_url         = https://...
scidb_auth        = None
http_auth         = ('foo', PASSWORD_PROVIDED)
verify            = None
admin             = False
namespace         = None
use_arrow         = False
result_size_limit = 256
no_ops            = False

To prompt the user for the password, use:

>>> import getpass
>>> db = connect(http_auth=('foo', getpass.getpass()))
... 
Password:

Use SSL by passing a URL beginning with https://. Normally the client checks the SSL certificate provided by the server. You can bypass this check by passing verify=False, though it isn’t recommended and it will produce warnings.

>>> db_ssl = connect(url, verify=False)
>>> print(db_ssl)
scidb_url         = https://...
scidb_auth        = ...
http_auth         = None
verify            = False
admin             = False
namespace         = None
use_arrow         = False
result_size_limit = 256
no_ops            = False

If you have access to the public half of the server’s certificate, you can pass the path of that certificate file to the verify argument to verify the server’s identity using that certificate. For example:

>>> db_ssl = connect(url, verify='/path/to/cert.pem')
... 

See Python requests library SSL Cert Verification section for details on the verify argument. verify=False disables SSL certificate verification. Warnings about the unverified HTTPS requests are displayed. The warnings can be disabled as well by either setting PYTHONWARNINGS="ignore:Unverified HTTPS request" in the environment before starting Python or by doing:

>>> import requests
>>> requests.packages.urllib3.disable_warnings(
...   requests.packages.urllib3.exceptions.InsecureRequestWarning)

To authenticate the scidb user, use the scidb_auth argument. It can contain either a (username, password) tuple, or the path to a file containing the username and password. If not provided, the default username and password are read from a file in the first of these locations that exists:

  • $SCIDB_AUTH_FILE

  • $XDG_CONFIG_DIR/scidb/iquery.auth

  • ~/.config/scidb/iquery.auth

See DB() for details about the auth file format and special requirements for its file permissions.

>>> db_ssl = connect(url, scidb_auth=('foo', 'bar'))
... 
>>> print(db_ssl)
... 
scidb_url         = https://...
scidb_auth        = ('foo', PASSWORD_PROVIDED)
http_auth         = None
verify            = ...
admin             = False
namespace         = None
use_arrow         = False
result_size_limit = 256
no_ops            = False

When using the iquery SciDB client, the --admin flag is available for opening a higher-priority session. This flag is also available in SciDB-Py and can be set at connection time (see SciDB Documentation for details on the effects of the flag). By default this flag is set to False:

>>> db_admin = connect(admin=True)
>>> print(db_admin)
scidb_url         = https://...
scidb_auth        = ...
http_auth         = None
verify            = ...
admin             = True
namespace         = None
use_arrow         = False
result_size_limit = 256
no_ops            = False

By default, the connect function queries SciDB for the list of available operators. This list is used for easy access to the SciDB operators, see the SciDB Operators section below. As a consequence the connection to SciDB is verified and a small delay might occur. This behavior can be disabled using the no_ops=True parameter. Accessing the SciDB operators as described in SciDB Operators will not be possible until the load_ops() function is called on the DB instance:

>>> db_no_ops = connect(no_ops=True)
>>> db_no_ops.scan
Traceback (most recent call last):
    ...
AttributeError: Operators not loaded. Run 'load_ops()' or use 'no_ops=False' (default) at connection time (constructor)

No query has been issued to SciDB yet.

>>> db_no_ops.load_ops()
>>> db_no_ops.scan
... 
Operator(db=DB('https://...',
               ...,
               None,
               ...,
               False,
               None,
               False,
               256,
               False),
         name='scan',
         args=[])

SciDB Arrays

SciDB arrays can be accessed using DB.arrays:

>>> db = connect()
>>> db.iquery('store(build(<x:int64>[i=0:2], i), foo)')
>>> dir(db.arrays)
... 
[u'foo']
>>> dir(db.arrays.foo)
... 
[u'i', u'x']
>>> db.arrays.foo[:]
   i    x
0  0  0.0
1  1  1.0
2  2  2.0
>>> db.arrays['foo'][:]
   i    x
0  0  0.0
1  1  1.0
2  2  2.0

To get the schema of an array, we can use the schema utility function:

>>> print(db.arrays.foo.schema())
foo<x:int64> [i=0:2:0:1000000]
>>> db.arrays.foo.schema().pprint()
... 
foo<x:int64> [i=0:2:0:1000000]
  name class   type nullable start end overlap    chunk
0    x  attr  int64     True
1    i   dim  int64              0   2       0  1000000
>>> db.iquery('remove(foo)')
>>> dir(db.arrays)
[]

Arrays specified explicitly are not checked:

>>> print(db.arrays.foo)
foo
>>> print(db.arrays.bar)
bar

In IPython, we can use <TAB> for auto-completion of array names, array dimensions, and array attributes:

In [1]: db.arrays.<TAB>
In [1]: db.arrays.foo
In [2]: db.arrays.foo.<TAB>
In [2]: db.arrays.foo.x

SciDB Operators

At connection time, the library downloads the list of available SciDB operators and macros and makes them available through the DB class instance:

>>> dir(db)
... 
[...,
 'cross_between',
 ...]
>>> db.apply
... 
Operator(db=DB('https://...',
               ...,
               None,
               ...,
               False,
               None,
               False,
               256,
               False),
         name='apply',
         args=[])
>>> print(db.apply)
apply()
>>> db.missing
Traceback (most recent call last):
    ...
AttributeError: 'DB' object has no attribute 'missing'

In IPython, we can use <TAB> for auto-completion of operator names:

In [1]: db.<TAB>
In [1]: db.apply

The operators can be execute immediately or can be lazy and executed at a later time. Operators that return arrays are lazy operators (e.g., apply, scan, etc.). Operators which do not return arrays execute immediately (e.g., create_array, remove, etc.).

>>> db.create_array('foo', '<x:int64>[i]')
>>> dir(db.arrays)
... 
[u'foo']
>>> db.remove(db.arrays.foo)
>>> dir(db.arrays)
[]

The list of available operators is re-loaded automatically when a load_library query is issued:

>>> db.load_library('limit')
... 
>>> 'limit' in dir(db)
... 
True

A similar functionality is not implemented for unload_library operator. The unload_library operator requires a SciDB restart, which makes re-loading the list of operators not practical. Nevertheless, one can trigger the re-loading manually after SciDB restart without creating a new DB instance:

>>> db.iquery("unload_library('limit')")
... 

After SciDB restart:

>>> db.load_ops()
>>> 'limit' in dir(db)
... 
False

The cross_join operator in SciDB supports aliasing for the array arguments, e.g., cross_join(left_array as left_alias,.... Aliasing is possible in SciDB-Py using the % operator:

>>> db.iquery('store(build(<x:int64>[i=0:1], i), foo)')
>>> db.cross_join(db.arrays.foo % 'f1',
...               db.arrays.foo % 'f2',
...               'f1.i', 'f2.i')[:]
   i    x  x_1
0  0  0.0  0.0
1  1  1.0  1.0
>>> db.remove(db.arrays.foo)

To retrieve the schema of a query result, the schema utility function can be used:

>>> print(db.build('<x:int64>[i=0:2]', 'i').schema())
build<x:int64> [i=0:2:0:1000000]
>>> db.build('<x:int64>[i=0:2]', 'i').schema().pprint()
... 
build<x:int64> [i=0:2:0:1000000]
  name class   type nullable start end overlap    chunk
0    x  attr  int64     True
1    i   dim  int64              0   2       0  1000000

Download Data from SciDB

>>> db.build('<x:int8 not null>[i=0:2]', 'i + 10')[:]
   i   x
0  0  10
1  1  11
2  2  12
>>> db.build('<x:int8 not null>[i=0:2]', 'i + 10').fetch(as_dataframe=False)
... 
array([(0, 10), (1, 11), (2, 12)],
      dtype=[('i', '<i8'), ('x', 'i1')])
>>> db.build('<x:int8 not null>[i=0:2]', 'i + 10').fetch(
...     atts_only=True)
    x
0  10
1  11
2  12
>>> db.build('<x:int8 not null>[i=0:2]', 'i + 10').apply('y', 'x - 5')[:]
   i   x  y
0  0  10  5
1  1  11  6
2  2  12  7
>>> db.build('<x:int8 not null>[i=0:2]', 'i + 10').store('foo')
... 
Array(DB('https://...',
         ...,
         None,
         ...,
         False,
         None,
         False,
         256,
         False),
      'foo')
>>> db.scan(db.arrays.foo)[:]
   i   x
0  0  10
1  1  11
2  2  12
>>> db.apply(db.arrays.foo, 'y', db.arrays.foo.x + 1)[:]
   i   x   y
0  0  10  11
1  1  11  12
2  2  12  13
>>> db.remove(db.arrays.foo)

Upload Data to SciDB

input and load operators can be used to upload data. An upload schema can also be provided. If the resulting array or schema is not provided, it can be generated from the upload data or upload schema. If the upload format is not provided, it can be constructed from the upload schema, upload data, or resulting array schema.

>>> db.input('<x:int64>[i]', upload_data=numpy.arange(3))[:]
   i    x
0  0  0.0
1  1  1.0
2  2  2.0
>>> db.input('<x:int64>[i]', upload_data=numpy.arange(3)).store(db.arrays.foo)
... 
Array(DB('https://...',
         ...,
         None,
         ...,
         False,
         None,
         False,
         256,
         False),
      'foo')
>>> db.load(db.arrays.foo, upload_data=numpy.arange(3))
... 
Array(DB('https://...',
         ...,
         None,
         ...,
         False,
         None,
         False,
         256,
         False),
      'foo')
>>> db.input('<x:int64>[j]', upload_data=numpy.arange(3, 6)
...  ).apply('i', 'j + 3'
...  ).redimension(db.arrays.foo
...  ).insert(db.arrays.foo)
>>> db.arrays.foo[:]
   i    x
0  0  0.0
1  1  1.0
2  2  2.0
3  3  3.0
4  4  4.0
5  5  5.0
>>> db.input('<i:int64 not null, x:int64>[j]',
...          upload_data=db.arrays.foo.fetch(as_dataframe=False)
...  ).redimension(db.arrays.foo
...  ).store('bar')
... 
Array(DB('https://...',
         ...,
         None,
         ...,
         False,
         None,
         False,
         256,
         False),
      'bar')
>>> numpy.all(db.arrays.bar.fetch(as_dataframe=False)
...           == db.arrays.foo.fetch(as_dataframe=False))
True
>>> buf = numpy.array([bytes([10, 20, 30])], dtype='object')
>>> db.input('<b:binary not null>[i]', upload_data=buf).store('taz')
... 
Array(DB('https://...',
         ...,
         None,
         ...,
         False,
         None,
         False,
         256,
         False),
      'taz')
>>> db.load('taz',
...         upload_data=buf,
...         upload_schema=Schema.fromstring('<b:binary not null>[i]'))
... 
Array(DB('https://...',
         ...,
         None,
         ...,
         False,
         None,
         False,
         256,
         False),
      'taz')

When uploading string attributes from NumPy or Pandas, be sure to use string not null rather than string. SciDB-Py can cope with nullability for numeric types using a type promotion scheme <http://pandas.pydata.org/pandas-docs/stable/gotchas.html #na-type-promotions-for-numpy-types>, but does not do so for string types.

>>> import pandas as pd
>>> df = pd.DataFrame({"owner": ['alice', 'bob', 'cecil'],
...                    "pet":  ['fluffy', 'spike', 'metatron']})
>>> ar = db.input("<human: string not null, animal: string not null>[i]",
...               upload_data=df.to_records(index=False)).store()
>>> ar[:]
   i  human    animal
0  0  alice    fluffy
1  1    bob     spike
2  2  cecil  metatron
>>> del ar

For files already available on the server the input or load operators can be invoked with the full set of arguments supported by SciDB. Arguments that need to be quoted in SciDB need to be double-quoted in SciDB-Py. For example:

>>> db.load('foo', "'/data.csv'", 0, "'CSV'")
... 
>>> for ar in ['foo', 'bar', 'taz']: db.remove(ar)

The store function accepts a temp argument as well. If the temp argument is set to True, a temporary array is created.

>>> ar = db.build('<x:int64>[i=0:2]', 'i').store('foo', temp=True)
>>> db.list()[['name', 'temporary']]
  name  temporary
0  foo       True
>>> db.remove(ar)

If an array name is not specified for the store operator, an array name is generated. Arrays with generated names are removed when the returned Array object is garbage collected. This behavior can be changed by specifying the gc=False argument to the store operator.

>>> ar = db.input(upload_data=numpy.arange(3)).store()
>>> ar
... 
Array(DB('https://...',
         ...,
         None,
         ...,
         False,
         None,
         False,
         256,
         False),
      'py_...')
>>> del ar

The iquery Function

Use the DB.iquery() function to execute literal queries against SciDB:

>>> db.iquery('store(build(<x:int64>[i=0:2], i), foo)')

Download Data from SciDB

The iquery function can be used to download data from SciDB by specifying the fetch=True argument:

>>> db.iquery('scan(foo)', fetch=True)
   i    x
0  0  0.0
1  1  1.0
2  2  2.0

To avoid downloading the dimension information and only download the attributes, use the atts_only=True argument:

>>> db.iquery('scan(foo)', fetch=True, atts_only=True)
     x
0  0.0
1  1.0
2  2.0
>>> db.iquery('remove(foo)')

Download operator output directly:

>>> db.iquery('build(<x:int64 not null>[i=0:2], i)',
...           fetch=True)
   i  x
0  0  0
1  1  1
2  2  2
>>> db.iquery('build(<x:int64 not null>[i=0:2], i)',
...           fetch=True,
...           atts_only=True)
   x
0  0
1  1
2  2

If dimension names collide with attribute names, unique dimension names are created:

>>> db.iquery('apply(build(<x:int64 not null>[i=0:2], i), i, i)', fetch=True)
   i_1  x  i
0    0  0  0
1    1  1  1
2    2  2  2

If schema is known, it can be provided to iquery using the schema argument. This speeds up the execution as iquery does not need to issue a show() query first in order to determine the schema:

>>> from scidbpy import Schema
>>> iquery(db,
...        'build(<x:int64 not null>[i=0:2], i)',
...        fetch=True,
...        schema=Schema(None,
...                      (Attribute('x', 'int64', not_null=True),),
...                      (Dimension('i', 0, 2),)))
   i  x
0  0  0
1  1  1
2  2  2
>>> iquery(db,
...        'build(<x:int64 not null>[i=0:2], i)',
...        fetch=True,
...        atts_only=True,
...        schema=Schema.fromstring('<x:int64 not null>[i=0:2]'))
... 
   x
0  0
1  1
2  2

Attributes with null-able types are promoted as per Pandas promotion scheme During such promotions, precision loss might occur. The user is notified about this via a UserWarning. If desired, such warnings can be disabled as follows:

>>> import warnings
>>> warnings.filterwarnings('ignore', category = UserWarning)

Type promotions can be avoided altogether, by specifying dataframe_promo = False in the iquery arguments. In this case, object records will be used instead of atomic values:

>>> iquery(db,
...        'build(<x:int64>[i=0:2], i)',
...        fetch=True,
...        atts_only=True,
...        as_dataframe=True,
...        dataframe_promo=False)
... 
... 
   x
0  (255, 0)
1  (255, 1)
2  (255, 2)

Download as NumPy Array:

>>> iquery(db,
...        'build(<x:int64>[i=0:2], i)',
...        fetch=True,
...        as_dataframe=False)
... 
array([(0, (255, 0)), (1, (255, 1)), (2, (255, 2))],
      dtype=[('i', '<i8'), ('x', [('null', 'u1'), ('val', '<i8')])])
>>> iquery(db,
...        'build(<x:int64>[i=0:2], i)',
...        fetch=True,
...        atts_only=True,
...        as_dataframe=False)
... 
array([((255, 0),), ((255, 1),), ((255, 2),)],
      dtype=[('x', [('null', 'u1'), ('val', '<i8')])])

If the accelerated_io_tools SciDB plugin is installed and enabled in Shim, SciDB arrays can be downloaded using the Apache Arrow library:

>>> db.iquery('scan(foo)', fetch=True, use_arrow=True)
... 
   i    x
0  0  0.0
1  1  1.0
2  2  2.0

By default, Apache Arrow is not used. If desired, use_arrow can be set to True at connection time (it is False by default). Once set at connection time, this value is used for any subsequent iquery calls if not overwritten:

>>> db_arrow = connect(use_arrow=True)
>>> db_arrow.iquery('scan(foo)', fetch=True)
... 
   i    x
0  0  0.0
1  1  1.0
2  2  2.0

Upload Data to SciDB

Data can be uploaded using the iquery function by providing an upload_data argument. A file name placeholder needs to be provided as part of the SciDB query string. The upload array schema and data format can be provided explicitly or as placeholders in the query string. The placeholders are replaced with the explicit values by the iquery function, before the query is sent to SciDB.

The SciDB query placeholders are:

  • '{fn}': mandatory placeholder which is replaced with the file name of the server file where the uploaded data is stored. It has to be quoted with single quotes in the query string.

  • {sch}: optional placeholder which is replaced with the upload array schema. It does not need to be quoted.

  • '{fmt}': optional placeholder which is replaced with the upload array format. It has to be quoted with single quotes in the query string.

See examples in the following subsections.

Upload NumPy Arrays

Provide a SciDB input, store, insert, or load query and a NumPy array. If the schema or format are provided as placeholders, the upload data dtype or upload schema is used to populate these placeholders.

>>> db.iquery("store(input(<x:int64>[i], '{fn}', 0, '{fmt}'), foo)",
...           upload_data=numpy.arange(3))
>>> db.arrays.foo[:]
   i    x
0  0  0.0
1  1  1.0
2  2  2.0
>>> db.iquery("insert(input({sch}, '{fn}', 0, '(int64)'), foo)",
...           upload_data=numpy.arange(3))

Optionally, a Schema object can be used to specify the upload schema using the upload_schema argument:

>>> db.iquery("load(foo, '{fn}', 0, '{fmt}')",
...           upload_data=numpy.arange(3),
...           upload_schema=Schema.fromstring('<x:int64 not null>[i]'))

Upload Binary Data

Provide a SciDB input, store, insert, or load query and binary data. The schema of the upload data needs to be provided either explicitly in the query string or using the upload_schema argument. If the schema is not provides using the upload_schema argument, the format needs to be provided explicitly in the query string:

>>> db.iquery("store(input({sch}, '{fn}', 0, '{fmt}'), foo)",
...           upload_data=numpy.arange(3).tobytes(),
...           upload_schema=Schema.fromstring('<x:int64 not null>[i]'))
>>> db.iquery("insert(input(foo, '{fn}', 0, '(int64)'), foo)",
...           upload_data=numpy.arange(3).tobytes())
>>> db.iquery("load(foo, '{fn}', 0, '(int64)')",
...           upload_data=numpy.arange(3).tobytes())

Upload Data Files

A binary or text file-like object can be used to specify the upload data. The content of the file has to be in one of the supported SciDB formats. A matching format specification has to be provided as well:

>>> with open('array.bin', 'wb') as file:
...     n = file.write(numpy.arange(3).tobytes())
>>> db.iquery("load(foo, '{fn}', 0, '(int64)')",
...           upload_data=open('array.bin', 'rb'))
>>> with open('array.csv', 'w') as file:
...     n = file.write('1\n2\n3\n')
>>> db.iquery("load(foo, '{fn}', 0, 'CSV')",
...           upload_data=open('array.csv', 'r'))
>>> import os
>>> os.remove('array.bin')
>>> os.remove('array.csv')
>>> db.remove(db.arrays.foo)

Please note that the data file is not read into the SciDB-Py library. The data file object is passed directly to the requests library which handles the HTTP communication with Shim.

Joins

SciDB provides a number of join operators, including join, cross_join, etc. As with any other operators, these operators can be used as literals in the DB.iquery function or as functions of the DB object. Here are some join examples exposing various features of the library:

>>> foo = db.build('<val:double>[i=0:2; j=0:2]', 'i * 3 + j').store('foo')
>>> db.join(foo,
...         db.build('<val:double>[i=0:2; j=0:5]', '0'))[:]
   i  j  val  val_1
0  0  0  0.0    0.0
1  0  1  1.0    0.0
2  0  2  2.0    0.0
3  1  0  3.0    0.0
4  1  1  4.0    0.0
5  1  2  5.0    0.0
6  2  0  6.0    0.0
7  2  1  7.0    0.0
8  2  2  8.0    0.0
>>> db.build('<val:double>[i=0:2; j=0:5]', '0'
...  ).join(db.arrays.foo)[:]
   i  j  val  val_1
0  0  0  0.0    0.0
1  0  1  0.0    1.0
2  0  2  0.0    2.0
3  1  0  0.0    3.0
4  1  1  0.0    4.0
5  1  2  0.0    5.0
6  2  0  0.0    6.0
7  2  1  0.0    7.0
8  2  2  0.0    8.0
>>> db.cross_join(foo,
...               db.build('<val:double>[k=0:5]', 'k + 100'),
...               foo.j, 'k')[:]
   i  j  val  val_1
0  0  0  0.0  100.0
1  0  1  1.0  101.0
2  0  2  2.0  102.0
3  1  0  3.0  100.0
4  1  1  4.0  101.0
5  1  2  5.0  102.0
6  2  0  6.0  100.0
7  2  1  7.0  101.0
8  2  2  8.0  102.0
>>> bar = db.build('<val:double>[j=0:5]', 'j + 100').store()
>>> db.cross_join(db.arrays.foo % 'left',
...               bar % 'right',
...               'left.j', 'right.j')[:]
   i  j  val  val_1
0  0  0  0.0  100.0
1  0  1  1.0  101.0
2  0  2  2.0  102.0
3  1  0  3.0  100.0
4  1  1  4.0  101.0
5  1  2  5.0  102.0
6  2  0  6.0  100.0
7  2  1  7.0  101.0
8  2  2  8.0  102.0
>>> db.remove(foo)
>>> db.remove(bar)

SciDB Enterprise Edition Features

SciDB Enterprise Edition features can be used directly as any other operators. One special case is the set_namespace operator. The operator alters the DB object on which it is called. The effect persists until the next call to set_namespace. The operator can be called directly (i.g., db.set_namespace) or through the iquery function. No immediate query is executed in SciDB, but the new namespace will take effect for any subsequent SciDB queries:

>>> print(db)
scidb_url         = https://...
scidb_auth        = ...
http_auth         = None
verify            = ...
admin             = False
namespace         = None
use_arrow         = False
result_size_limit = 256
no_ops            = False

Notice the namespace field of the DB instance.

>>> db.create_namespace('private')
>>> db.set_namespace('private')
>>> print(db)
scidb_url         = https://...
scidb_auth        = ...
http_auth         = None
verify            = ...
admin             = False
namespace         = private
use_arrow         = False
result_size_limit = 256
no_ops            = False
>>> db.iquery("set_namespace('public')")
>>> print(db)
scidb_url         = https://...
scidb_auth        = ...
http_auth         = None
verify            = ...
admin             = False
namespace         = public
use_arrow         = False
result_size_limit = 256
no_ops            = False

For convenience, an initial namespace can be provided at connection time:

>>> db_ssl = connect(url, namespace='private')
>>> print(db_ssl)
scidb_url         = https://...
scidb_auth        = ...
http_auth         = None
verify            = ...
admin             = False
namespace         = private
use_arrow         = False
result_size_limit = 256
no_ops            = False

To drop the namespace, make sure it is empty, then run:

>>> db.drop_namespace('private')